(Half) Big Data handling with R

Severine Bord, Tristan Mary-Huard
2018-06-29
Dataset 1: Arabidopsis

1,307 Arabidopsis lines
Sequenced at 214,051 biallelic markers

Arabidopsis[1:5,1:10]

```r
##    L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
## M1  1  0  1  1  0  1  0  1  1  1
## M2  1  0  1  1  0  1  1  1  1  1
## M3  1  0  1  1  0  1  1  1  1  1
## M4  0  0  0  0  1  0  0  0  0  0
## M5  0  0  0  0  0  0  0  0  0  0
```

Goal: perform basic descriptive analysis
- Allelic frequency per marker,
- Filtering markers with low polymorphism,
- Compute a kinship matrix (ie a genetic similarity matrix).
Dataset 2: Orange

Hour per hour activity of 22,772 relay antennas:
Id variables: *Date_Time, Id_RelAnt*
Measurement variables: *NbSim_Fr, NbSim_Other, NbCom_Fr, NbCom_Other*

Orange[1:5,]

```
   Date_Time Id_RelAnt NbSim_Fr NbSim_Other NbCom_Fr NbCom_Other
1 2017-04-15 00 00000001A1    37       0     141           0
2 2017-04-15 00 00000001B1   134       0     503           0
3 2017-04-15 00 00000001B2   170       2     752           2
4 2017-04-15 00 00000001B3    93       0     550           0
5 2017-04-15 00 00000001C1   122       2    1149          13
```

Goal: perform basic descriptive analysis
- compute mean activity per hour.
By default analysis
Arabidopsis

Load data

```r
read.table('./Data/Arabidopsis/Arabidopsis.txt',header=F,sep=';') %>%
as.matrix() -> Arabidopsis
```

Compute frequencies

```r
Freq <- apply(Arabidopsis, 2, mean)
```

Filter frequencies

```r
MinMaf <- 0.05
MafFilter <- Freq > MinMaf | Freq < 1-MinMaf
Filtered <- Arabidopsis[MafFilter,]
```
Arabidopsis

Compute kinship

Kinship <- (crossprod(Filtered) + crossprod(1-Filtered))/nrow(Filtered)

Invert matrix

solve(Kinship)

Total (default) computational time: 76.8s
Arabidopsis

Load data

```r
fread('./Data/Arabidopsis/Arabidopsis.txt', header=F, sep=';') %>%
  as.matrix() -> Arabidopsis
```

Compute frequencies

```r
Freq <- rowMeans(Arabidopsis)
```

Invert matrix

```r
InvKinship <- chol2inv(chol(Kinship))
```

9.4s ($\times 6$)

0.7s ($\times 6$)

0.2s ($\times 6$)
Arabidopsis

Summary

Greatly improves performance:
Total (default) computational time: 76.8s
Total (improved) computational time: 25.7s

But...

Arabidopsis from read.table: 1067.4 Mb
Arabidopsis from fread: 1067.4 Mb
More on this latter...

Does not solve the memory problem...
Orange

MeanPerHour <- Orange %>%
 mutate(Time = substr(Date_Time, start=12, stop=13)) %>%
 group_by(Time) %>%
 summarise(M_NbSim_Fr=mean(NbSim_Fr), M_NbSim_Other=mean(NbSim_Other),
 M_NbCom_Fr=mean(NbCom_Fr), M_NbCom_Other=mean(NbCom_Other))
head(MeanPerHour)

A tibble: 6 x 5
Time M_NbSim_Fr M_NbSim_Other M_NbCom_Fr M_NbCom_Other
<chr> <dbl> <dbl> <dbl> <dbl>
1 00 77.3 1.71 428. 5.64
2 01 40.5 1.16 208. 3.75
3 02 23.7 1.00 107. 3.17
4 03 16.1 0.861 63.6 2.69
5 04 13.9 0.794 47.6 2.43
6 05 15.4 0.782 46.6 2.44

Again, limitation comes from loading the data...
Today's topic

Handle "half big" data, i.e. datasets whose size
- is too large to be loaded in R memory,
- is small enough to be loaded in RAM.
(≈ 5-15 Go)

Different strategies and packages

1. Chunk the data yourself
 * no package required…
 * … but requires to adapt your code
 * can be efficient IF calculations can be chunked.

2. Use RAM rather that R memory
 * to perform matrix algebra: package bigmemory
 * to perform data curation: package sparklyr
Chunking
Arabidopsis revisited

Strategy Split the data into K chunks, compute on each chunk the required quantities, then collect all results.

Are the tasks chunk friendly?
- Allelic frequency per marker,
- Filtering markers with low polymorphism,
- Compute a kinship matrix (ie a genetic similarity matrix).

Any idea?

```r
Freq <- (mc)lapply(1:K, function(k){
    fread(Chunk_k)
    rowMeans(Chunk_k)
})
```
Arabidopsis revisited

```r
trial <- file('./Data/Arabidopsis/Arabidopsis.txt')
Kinship <- matrix(0,NbInd,NbInd)
open(trial)
Freq <- (mc)lapply(NbSnpPerRound, function(nblines){
    Don <- matrix(scan(trial,skip=0,nlines=nblines,quiet=T,sep=';'),
                   nrow=nblines,byrow = TRUE)
    FreqLoc <- rowMeans(Don)
    Kinship <<- Kinship + crossprod(Don) + crossprod(1-Don)
    return(FreqLoc)
})
close(trial)

Total computational time: 94s
```
The "big" packages
Main idea

- **R memory**
- **RAM**
- **Disk space**
Main idea

RAM

R memory

Disk space
The 'big' package family

The big family consists of several packages for performing tasks on large datasets:

1. `bigmemory` for loading of large matrices in RAM.
2. `bigalgebra` provides BLAS and LAPACK linear algebra routines for native R matrices and big.matrix.
3. `biganalytics` provides analysis routines on big.matrix such as GLM and bigkmeans.

Limitations
Matrices can contain only one type of data.
Since the matrix will be stored as a C++ object in RAM, data types for elements are dictated by C++: `double`, `integer`, `short`, `char`.
Getting prices right!
Arabidopsis, the 'big' way

```r
# Load data from a file
pm <- proc.time()
Arabidopsis <- read.big.matrix("./Data/Arabidopsis/Arabidopsis.txt", type=",integer", header = F, sep=',')
Times.big[1:3] <- proc.time()
Names.big <- 'Load with read.big.matrix'
cpt <- cpt+1
Nbsnp <- nrow(Arabidopsis)
Mlines <- ncol(Arabidopsis)

### Compute Freq. filter on MAF and compute kinship

### Compute frequencies using colmean

Console: [R/StateOfTheR/BigData/]
> memory.size()
[1] 117.99
>
```
Arabidopsis, the 'big' way

Physical memory: 6.05 Go
Arabidopsis, the 'big' way

Arabidopsis <- read.big.matrix("./Data/Arabidopsis/Arabidopsis.txt",
 type = "double", header = F, sep = ';')
Arabidopsis, the 'big' way

Arabidopsis <- read.big.matrix("./Data/Arabidopsis/Arabidopsis.txt",
 type ="double", header = F, sep=';')

Physical memory: 7.1 Go
Matrix algebra

Available from `bigmemory`:
 `dim, ncol, nrow`

Available from `bigalgebra`:
 `crossprod, tcrossprod, t, %*%, eigen, chol`

Available from `biganalytics`:
 `col{mean, min, max, var, sd, sum, prod}`

Not available:
 `svd, solve`
Frequencies

Several ways to compute frequencies:

```r
##Compute frequencies using apply
Freq <- biganalytics::apply(Arabidopsis, 1, mean)

##Compute frequencies using rowMeans
Freq <- rowMeans(Arabidopsis[,])

##Compute frequencies using algebra
Freq <- Arabidopsis[,] %*% rep(1/NbLines, NbLines)

##Compute frequencies using big algebra
Freq <- Arabidopsis %>% as.big.matrix(rep(1/NbLines, NbLines))

##Compute frequencies using big algebra
Freq <- Arabidopsis %>% t %>% colmean %>% as.big.matrix
```

What about memory?
Kinship and inverse

Local version
```
Kinship <- ( crossprod(Arabidopsis[,]) + crossprod(1-Arabidopsis[,]) ) / nrow(Arabidopsis)
InvKin <- chol2inv(chol(Kinship))
```

RAM version (wherever feasible)
```
Kinship <- ( crossprod(Arabidopsis) + crossprod(1-Arabidopsis) ) / nrow(Arabidopsis)
InvKin <- chol2inv(chol(Kinship)[,])
```

Loading time: 64s
Filtering time: 15.5s
Processing time (local): 13s
Processing time (RAM): 18.2s
Compared to 10.3 with the default analysis.
Summary

Lesson 1
The big packages make your analyses feasible, not faster.
No need (or gain) to perform all computations in RAM.
Store your big objects there, keep the rest as usual...

Lesson 2
Check memory storage in every ways...
... including tmp files!

#Compare some basic functions to compute frequencies
res <- microbenchmark(rowMeans(Arabidopsis[,]),
 Arabidopsis %>% t %>% colmean %>% as.big.matrix,
 Arabidopsis%*%as.big.matrix(rep(1/NbLines,NbLines)),
 times = 50)

Uncovered topics
Some really efficient functions, eg mwich.
Possible to load the matrix in shared memory.
Spark for R
Local use of Spark

Same philosophy about using RAM outside R memory. **BUT** spark may be used on clusters for distributed memory.
What is Hadoop?

Hadoop is an open-source software framework for storing data and running applications on clusters.

- good for simple information requests and problems that can be divided into independent units,
- not efficient for iterative and interactive analytic tasks.

Based on two concepts:

- the 'HDFS' file system: chunks and distributes the data on the different nodes of the cluster,
- the 'MapReduce' algorithm: translates the task into small distributed operations, summarizes results obtained from the nodes.

Nodes do not communicate except through sorts/shuffles.
What is (Apache) Spark?

Apache Spark:

- is **more accessible** and **more powerful** than Hadoop.
- began life in 2009 as a project within the AMPLab at the University of California, Berkeley.
- became an incubated project of the Apache Software Foundation in 2013.
- Simplicity, Speed, Support

Tasks most frequently associated with Spark include

- **interactive queries** across large data sets,
- **processing of streaming data** from sensors or financial systems, and
- **machine learning** tasks.
What Does Spark Do?

Handles several petabytes of data at a time, distributed across a cluster of thousands of cooperating physical or virtual servers.

Supports different languages such as Java, Python, R, and Scala, benefits from many classical libraries.

Performance:

- From the beginning, Spark was optimized to run in memory.
- process data far more quickly than Hadoop MapReduce (write data to and from computer hard drives between each stage of processing, 100 times faster than Hadoop MapReduce).

In this presentation: 0.01% of Spark capacities are explored!
Requirements

Install Java 8
* To create a virtual machine on your computer (for local use),
* To interact/communicate with Spark

Install sparklyr
From CRAN or gitHub. Once install, you can
* install spark (and hadoop) on your machine using command
 spark_install,
* open a spark session using command 'spark_connect'

Start playing with your new toy!
Orange, the Spark way

```r
setwd('D:/R/StateOfTheR/BigData')
Orange_tbl <- 
  spark_read_csv(sc = sc, name = 'Orange',
    path = './Data/Orange/NIDT_D4C_2G3G4G_2017105.CSV.gz',
    header = FALSE, delimiter = ';')

## # Source:   lazy query [?? x 6] ## # Database: spark_connection ##   Date_Time     Id_RelAnt  NbSim_Fr NbSim_Other NbCom_Fr NbCom_Other
##   <chr>         <chr>         <int>       <int>    <int>       <int>
## 1 2017-04-15 00 00000001A1       37           0      141           0
## 2 2017-04-15 00 00000001B1      134           0      503           0
## 3 2017-04-15 00 00000001B2      170           2      752           2
## 4 2017-04-15 00 00000001B3       93           0      550           0
## 5 2017-04-15 00 00000001C1      122           2     1149          13
## 6 2017-04-15 00 00000001D1       19           0       79           0
```
Lazy evaluation: what does it mean?

MeanPerHour <- Orange_tbl %>%
 mutate(Time = substr(Date_Time, start=12, stop=13)) %>%
 group_by(Time) %>%
 summarise(M_NbSim_Fr=mean(NbSim_Fr),...)

GlobalMean_NbSimFr <- MeanPerHour %>% summarise(Mean=mean(M_NbSim_Fr))

Pay attention to the way computational times are evaluated!
From Spark to R memory
MeanPerHour_R <- collect(MeanPerHour)

From Spark to Disk
spark_write_csv(x=MeanPerHour, path = './Results/MeanPerHour.csv',
 header = T, delimiter = ';')

From R to Spark
MeanPerHour_2 <- copy_to(sc, MeanPerHour_R,
 name= "MeanPerHour_Sp", overwrite = T)

Have a look at the different environments:
ls()
src_tbls(sc)
Check where the objects are

```r
## Have a look at the different environments:
ls()
src_tbls(sc)
```

```r
> ## Have a look at the different environments:
> ls()
> [1] "GlobalMean_NbSimFr" "MeanPerHour"
> [3] "MeanPerHour_2" "MeanPerHour_R"
> [5] "Orange_tbl1" "sc"
> src_tbls(sc)
> [1] "meanperhour_sp" "orange"
```
Pay attention to object classes

```r
ListRelAnt <- Orange_tbl %>% distinct(Id_RelAnt)
ListRelAnt$Id_RelAnt[1:10]

## NULL

collect(ListRelAnt)$Id_RelAnt[1:10]

##  [1] "00000001B2" "00000001D1" "00000001F5" "00000001J4" "00000001Q1"
##  [6] "00000001T2" "00000001V1" "00000001W4" "00000002C1" "00000002M2"
```
Use of R functions to create tables in the spark environment

What are the difference between the 3 following expressions?

AddDensity_trial1 <- MeanPerHour %>%
 mutate(Density = dnorm(M_NbSim_Fr, mean = 100, sd = 50))

AddDensity_trial2 <- MeanPerHour %>%
 collect() %>%
 mutate(Density = dnorm(M_NbSim_Fr, mean = 100, sd = 50))

AddDensity_trial3 <- MeanPerHour %>%
 spark_apply(function(d){dnorm(d$M_NbSim_Fr, mean = 100, sd = 50)})
An example of "fancy" application

```r
MeanPerHour %>%
  mutate(TimeNum = Time + 0) %>%
  mutate(TimeSlice = ifelse(TimeNum %in% c(0:5, 18:23), 'Evening',
                             ifelse(TimeNum %in% 6:11, 'Morning',
                                    'Afternoon'))) %>%
  mutate(TimeRecoded = ifelse((TimeSlice == 'Evening') & (TimeNum %in% 18:23),
                               TimeNum-24, TimeNum)) %>%
  group_by(TimeSlice) %>%
  spark_apply(
    function(d) broom::tidy(lm(M_NbCom_Fr ~ TimeRecoded, d)),
    names = c("term", "estimate", "std.error", "statistic", "p.value", "sigma"),
    group_by = "TimeSlice"
  )
```

About the tidy function

Broom_vignette
An example of "fancy" application

```r
## # Source: table<sparklyr_tmp_211826b15bcf> [?? x 6]
## # Database: spark_connection
##   TimeSlice term        estimate std.error statistic      p.value
## 1   Evening (Intercept)    604.       44.0    13.7   0.0000000828
## 2   Evening   TimeRecoded   -160.       12.6   -12.7   0.000000176
## 3   Morning  (Intercept)  -1805.      189.     -9.57  0.000667
## 4   Morning   TimeRecoded    297.       21.8    13.6   0.000167
## 5   Afternoon (Intercept)   1573.      263.      5.97  0.00394
## 6  Afternoon TimeRecoded    -17.7      18.0    -0.982 0.382
```
An example of "fancy" application
Machine learning with spark

Many classical/ML algorithms available:

Supervised methods
ml_linear_regression, ml_logistic_regression,
ml_survival_regression, ml_generalized_linear_regression,
ml_decision_tree, ml_random_forest,
ml_gradient_boosted_trees,...

Unsupervised methods
ml_kmeans

Exploratory methods
ml_pca
Beyond local use of Spark

Working on a cluster, one can
- distribute the data: each node of the cluster will get a (random) chunk of the data,
- distribute computation: each node can process only the data at hand.

Consequences:
- real parallel computation,
- exact results for many reshaping treatments,
- non-exact results for many ML tasks?
Summary

Both bigmemory and sparklyr allows one to circumvent the memory limitation of R.

The two packages are still in development...
- latest versions not always on CRAN,
- inconsistent/obsolete tutorials,
- many compatibility troubles.