Newton method for unconstrained minimization

minimize f(x)

f convex, twice continously differentiable

Newton method

$$x^{+} = x - t\nabla^{2} f(x)^{-1} \nabla f(x)$$

- advantages: fast convergence, affine invariance
- disadvantages: requires second derivatives, solution of linear equation

can be too expensive for large scale applications

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

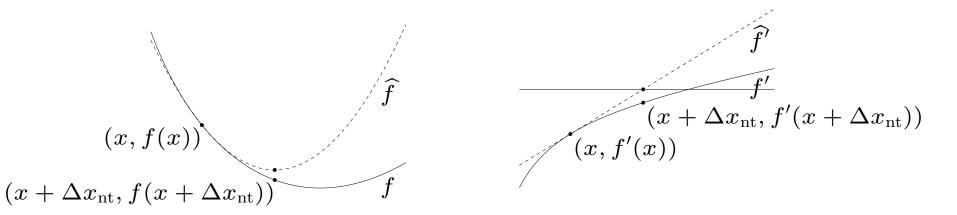
interpretations

• $x + \Delta x_{nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves linearized optimality condition

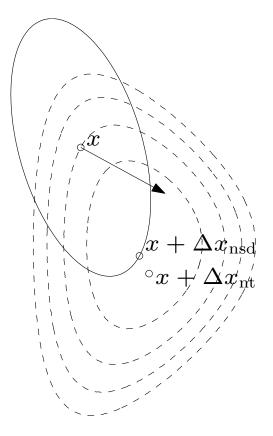
$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$



Unconstrained minimization

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$



dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x)v = 1\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^\star

properties

• gives an estimate of $f(x) - p^*$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

• equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

Newton's method

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$. repeat 1. Compute the Newton step and decrement. $\Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$. 3. Line search. Choose step size t by backtracking line search.

4. Update.
$$x:=x+t\Delta x_{
m nt}$$
.

affine invariant, *i.e.*, independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y)=f(Ty)$ with starting point $y^{(0)}=T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$