Gradient descent method

general descent method with $\Delta x=-\nabla f(x)$

```
given a starting point x\in\operatorname{dom}f.
repeat
    1. }\Deltax:=-\nablaf(x)
    2. Line search. Choose step size t via exact or backtracking line search.
    3. Update. }x:=x+t\Deltax\mathrm{ .
until stopping criterion is satisfied.
```

- stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right)
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow; rarely used in practice

quadratic problem in \mathbf{R}^{2}

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

nonquadratic example

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

backtracking line search

exact line search

Nondifferentiable example

$$
f(x)=\sqrt{x_{1}^{2}+\gamma x_{2}^{2}} \quad \text { for }\left|x_{2}\right| \leq x_{1}, \quad f(x)=\frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}} \quad \text { for }\left|x_{2}\right|>x_{1}
$$

with exact line search, starting point $x^{(0)}=(\gamma, 1)$, converges to non-optimal point

gradient method does not handle nondifferentiable problems

