Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$. **repeat** 1. $\Delta x := -\nabla f(x)$. 2. *Line search.* Choose step size t via exact or backtracking line search. 3. *Update.* $x := x + t\Delta x$. **until** stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

• very simple, but often very slow; rarely used in practice

quadratic problem in $\ensuremath{\mathsf{R}}^2$

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if
$$\gamma \gg 1$$
 or $\gamma \ll 1$

• example for $\gamma = 10$:

nonquadratic example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

backtracking line search

 $x^{(1)}$

 $x^{(0)}$

exact line search

Nondifferentiable example

$$f(x) = \sqrt{x_1^2 + \gamma x_2^2} \quad \text{for } |x_2| \le x_1, \qquad f(x) = \frac{x_1 + \gamma |x_2|}{\sqrt{1 + \gamma}} \quad \text{for } |x_2| > x_1$$

with exact line search, starting point $x^{(0)} = (\gamma, 1)$, converges to non-optimal point

gradient method does not handle nondifferentiable problems

Gradient method